Basics of Substructuring Assembly

This page introduces the basics for combining two substructures. Therefore, consider two substructures A and B as depicted in the following figure:

The two substructures have a total of six nodes; the displacements of the nodes are described by a set of Degrees of Freedom (DoFs)  which have different subscript indices depending on their function:

  • Index 1: DoFs of the internal nodes of substructure A.
  • Index 2: DoFs of the coupling nodes of substructures A and B, i.e. interface DoFs.
  • Index 3: DoFs of the internal nodes of substructure B.

For the purpose of substructuring, the set of external forces $$\mathbf{f}$$ and motion $$\mathbf{u}$$ is extended by a set of interface forces $$\mathbf{g}$$ that keep the structures together:

$$ \mathbf{u} \overset{\Delta}{=} \begin{bmatrix}
\mathbf{u}_{1}^\mathrm{{A}}\\
\mathbf{u}_{2}^\mathrm{{A}}\\
\mathbf{u}_{2}^\mathrm{{B}}\\
\mathbf{u}_{3}^\mathrm{{B}}
\end{bmatrix}, \; \; \; \; \mathbf{f} \overset{\Delta}{=} \begin{bmatrix}
\mathbf{f}_{1}^\mathrm{{A}}\\
\mathbf{f}_{2}^\mathrm{{A}}\\
\mathbf{f}_{2}^\mathrm{{B}}\\
\mathbf{f}_{3}^\mathrm{{B}}
\end{bmatrix}, \; \; \; \; \mathbf{g} \overset{\Delta}{=} \begin{bmatrix}
\mathbf{g}_{1}^\mathrm{{A}}\\
\mathbf{g}_{2}^\mathrm{{A}}\\
\mathbf{g}_{2}^\mathrm{{B}}\\
\mathbf{g}_{3}^\mathrm{{B}}
\end{bmatrix} $$

The relation between dynamic displacements $$\mathbf{u}$$ and external forces $$\mathbf{f}$$ of the uncoupled problem is governed by the corresponding dynamic equation, such as presented in the modeling domains chapter.

Force & displacement equilibria

When two or more substructures are to be coupled, two conditions must always be satisfied, regardless of the coupling method used:

  • Force equilibrium on the substructures’ interface Degrees of Freedom $$ (\mathbf{g}_{2}^{\mathrm{A}} = – \mathbf{g}_{2}^{\mathrm{B}}) $$. This can also be expressed using the Boolean localisation matrix $$ \mathbf{L}$$, localizing the interface forces $$ \mathbf{g}_{2} $$ in the global set of DoFs:

$$ \mathbf{L} = \begin{bmatrix}
\mathbf{I} & \mathbf{0} & \mathbf{0}\\
\mathbf{0} & \mathbf{I} & \mathbf{0}\\
\mathbf{0} & \mathbf{I} & \mathbf{0}\\
\mathbf{0} & \mathbf{0} & \mathbf{I}
\end{bmatrix}, \;\;\; \mathbf{L}^\mathrm{T}\mathbf{g} = \mathbf{0} \rightarrow \left\{\begin{matrix}
\mathbf{g}_1^\mathrm{A} = \mathbf{0}\\
\mathbf{g}_2^\mathrm{A} = – \mathbf{g}_2^\mathrm{B}\\
\mathbf{g}_3^\mathrm{B} = \mathbf{0}
\end{matrix}\right. $$

  • Compatibility of the substructures’ motion at the interface DoFs $$ (\mathbf{u}_{2}^{\mathrm{A}} = \mathbf{u}_{2}^{\mathrm{B}}) $$. Note that this can be expressed based on the signed Boolean matrix $$ \mathbf{B} $$:

$$ \mathbf{B} = \left [ \mathbf{0 -I \; \; I \;\; 0} \right ], \;\;\; \mathbf{Bu} = \mathbf{0} \rightarrow \left\{\begin{matrix}
\mathbf{u}_{2}^\mathrm{{B}} – \mathbf{u}_{2}^\mathrm{{A}} = \mathbf{0}
\end{matrix}\right. $$

Primal and dual assembly

Depending on whether one chooses the motion $$ \mathbf{u} $$ or the forces $$ \mathbf{g} $$ as unknowns at the interface, a primal or dual assembled system of equations is obtained.

  • In a primal assembly formulation, a unique set of interface DoFs is defined to satisfy compatibility directly. The interface forces are eliminated as unknowns during the assembly.
  • In a dual assembly formulation, the full set of global DoFs is retained. The dually assembled system introduces Lagrange multipliers to satisfy the force equilibrium directly.

    Contact us for more VIBES

    Contact our support team or call us on +31 85 744 09 70

    ×